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but different widths or force constants (see eq A8e). 
We like to add that we have also tried less flexible potential 

functions, e.g., fourth- or sixth-order polynomials V(q) - V0 + 
V2q

2 + V^q* (+K6^
6), but these cannot account for the 

"experimental" conditions (see eqs A8a-d), irrespective of the value 
of k in eq A8e. However, other functions with less parameters 
would also satisfy conditions (see eqs A8a-d), e.g., a double Morse 
potential 

V= D\exp[-(-q + qM " U2 + 
D{exp[-(q + qM - Ip - D (A9) 

with parameters D = 0.0098£h, qt = 0.62% |8 = 8.4O0"
1, yielding 

V = 25 kJ mol"1 and hw = 900 cm"1 and V(qc) = V(-q,) s 0. 
This double Morse potential would also account for the inverse 
isotope effect; i.e., hw would increase from 900.0 cm"1 to 920.4 
cm"1 when 12C1H is replaced by 13C2H. 

Finally, let us consider the symmetry selection rules for the 
fundamental transition |0) -—12> depending on the dipole functions 
lii(q), i - x,y, z and matrix elements (2|M,|0). 

The Cj symmetry of semibullvalene along the reaction path q 
implies the following symmetries of the ^,'s (see Scheme I): 

M,(«) - -MxH) (AlOa) 

Introduction 
Neural networks1'2 are equipped by learning features that allow 

computers to be trained to recognize patterns in data of high 
dimensionality. Such patterns are manifested by effective cor­
relations between molecular structure and property.3-5 The neural 
networks do not require any formulation of rules about reactivity 
to make decisions. They form an internal model by extracting 
information directly from the properly selected examples belonging 
to the so-called training set. The expert systems based on neural 
networks can be used to roughly estimate the yields of reactions 
and to classify the reaction products (e.g., regioselectivity). Such 

(1) (a) Simpson, P. K. Artificial Neural Systems; Pergamon Press: New 
York, 1990. (b) Wasserman, P. Neural Computing: Theory and Practice; 
Van Nostrand Reinhold: Princeton, NJ, 1989. 

(2) Rumelhart, D. E.; McClelland, J. L. (and the PDP Research Group) 
Parallel Distributed Processing; MIT Press: Cambridge, MA, 1986; Vols. 
I and II. 

(3) (a) Zupan, J.; Gasteiger, J. Anal. Chim. Acta 1991, 248, 1. (b) 
Tetrahedron Comput. Methodol. 1990, 3, no. 1. 

(4) (a) Elrod, D. W.; Maggiora, G. M.; Trenary, R. G. J. Chem. Inf. 
Comput. Sci. 1990, 30, 477. (b) Elrod, D. W.; Maggiora, G. M.; Trenary, 
R. G. Tetrahedron Comput. Methodol. 1990, 3, 163. (c) Luce, H. H.; Govind, 
R. Tetrahedron Comput. Methodol. 1990, 3, 143. 

(5) Kvasnicka, V.; Posplchal, J. J. MoI. Struct. (THEOCHEM) 1991, 235, 
111. 

ItM) - 0 (AlOb) 

M,(?) = +M2H) (AlOc) 

For the resulting matrix elements of levels |0), |2) with gerade 
symmetry, we obtain 

(2K(O)=O (Alia) 

(2HO)=O (AlIb) 

(2H0) * 0 (AlIc) 

As a consequence, we have 
<2|-M£|0> = -<2|Mir0>£, (AlId) 

for the dipole transition matrix element, and the golden rule for 
the rate of absorption 

Jfc(2 — 0) = (2ir/A)<2| - 0.5M X ̂ 1O)2SOE2 -E0- M 
(A12) 

calls for z-polarized light 

Ez = E exp[i(*rz - wt)] (A13) 

otherwise, the fundamental transition |0) -*• |2) is dipole-forbidden. 

an expert system is vital in any computer system for organic 
synthesis design. 

The purpose of the present communication is to demonstrate 
an application of neural networks for classification and prediction 
of inductive and resonance effects (represented by a constants) 
of functional groups. These parameters, initially introduced in 
physical organic chemistry,6 describe the influence of functional 
groups on the reactivity of synthons78 (reaction cores). Input 
information to the neural network, which properly represents the 
topology and basic physical parameters of functional groups, was 
chosen to consist of simple descriptors5'9 assigned to numbers of 
appearance of specially labeled rooted subgraphs in the functional 
group. This means that the functional groups are described by 
graph-theoretical parameters without the necessity to calculate 
any additional physical or physico-chemical parameters of 
functional groups. The results obtained are very encouraging and 

(6) Hammett, L. P. Physical Organic Chemistry; McGraw-Hill: New 
York, 1970. 

(7) Corey, E. J. Pure Appl. Chem. 1967, 14, 19. 
(8) (a) Kvasnicka, V.; Posplchal, J. Int. J. Quant. Chem. 1990, 28, 253. 

(b) Koca, J.; Kratochvil, M.; Kvasnicka, V.; Matyska, L.; Posplchal, J. Syn-
thon Model of Organic Chemistry and Synthesis Design. Springer Verlag: 
Berlin, 1989. 

(9) Zou, Y.; Johnson, M.; Tsai, C-C. J. Chem. Inf. Comput. Sci. 1990, 
30, 442. 
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Output layer 

Hidden layer 

Hidden layer 

Input layer 

Figure 1. An illustrative example of the feed-forward neural network 
composed of 10 neurons and 13 connections, represented by an acyclic 
and connected oriented graph. Its neurons are vertically structured into 
one input layer, two hidden layers, and one output layer. 

support the common chemical belief that the properties of mo­
lecular systems are determined mainly by structural formulas. The 
hidden activities of a three-layer neural network correspond to 
the so-called internal representation of the objects under study 
(in our case, the functional groups). These entities are useful for 
a cluster analysis10 of functional groups which will be demonstrated 
in the second part of this paper. Such an analysis allows one to 
overcome to some extent the main drawback of the neural network 
paradigm, that the network cannot "explain" its predictions. 

Theory of Neural Networks 
A feed-forward neural network2 applied for solving classification 

problems may be formally considered as an oriented and connected 
graph;" see Figure 1. The graph is composed of N vertices, 
neurons, and M edges, connections. The neuron set is divided into 
three disjoint subsets (see Figure 1): 

K = K 1 U K H U K 0 (1) 

where K1 is composed of V̂1 input neurons that are incident only 
with outgoing connections, KH is composed of NH hidden neurons 
that are incident at least with one incoming and one outgoing 
connection, and K0 is composed of N0 output neurons that are 
incident only with incoming connections. The neurons may be 
vertically organized in the so-called layers. 

Neurons and connections of neural networks are evaluated by 
real numbers. We assign a threshold coefficient O1 to each hidden 
or output neuron vt and a weight coefficient Wj, to each connection 
outgoing from vertex v, and incoming to the vertex Vj. Moreover, 
we assign to each neuron v, an activity x,. We postulate that 
activities of input neurons are constant, whereas the activities of 
other neurons are determined by 

*/ - f(W (' = 1. 2, ..., N) (2a) 

Si = Z<»ijXj + &i (2b) 

where the summation index; runs over all neurons that are ad­
jacent to the neuron V1 by connections that are incoming to V1 and 
outgoing from u.'s. We have used the following transfer function 

B + A expK) 
™ = 1 + expH) ( 3 a ) 

with asymptotic boundaries specified by A = - 1 , B = 1. Its first 
derivative is determined by 

f'tt) = 
M + f(Q][J-f(fl] 

B-A (3b) 

(10) Anderberg, M. R. Cluster Analysis for Applications; Academic Press: 
New York, 1973. 

(11) Harary, F. Graph Theory; Addison-Wesley: Reading, MA, 1969. 

A recurrent application of formula 2 gives the activities of all 
hidden and output neurons. 

A supervised adaptation process2 of neural network consists 
of looking for such threshold and weight coefficients that give, 
for prescribed input activities, such output activities, which are 
in close agreement with the required output activities. An objective 
function gives us a measure of such an agreement, based, for 
example, on the least-squares method. A goal of the adaptation 
process is finding the weight and threshold coefficients that will 
minimize the objective function E. This minimization may be 
carried out by a version of gradient method,12 e.g., by its simplest 
version called the steepest-descent method}2 For implementation 
of this method, we have to know all partial derivatives 6EfSw1J 
and dE/ddt of the objective function with respect to the weight 
and threshold coefficients. It is easy to see that these partial 
derivatives are mutually related by 

BE 
da>„ 

dE_ 
dd,Xj (4) 

This means that the whole process of calculation of partial de­
rivatives dE/doijj and dE/dd, may be reduced to a substantially 
simpler calculation of 8E/dOt; the two-index derivatives dE/dwy 
are then determined by the one-index derivatives dE/dtij. The 
partial derivatives dE/dd, are determined by1314 

dE T ^dE 1 
or i E Vn U K0) (5) 

where the term g, is determined by a difference of the calculated 
output activity and the required activity both assigned to an output 
neuron u„ and & = 0 for hidden and input neurons. The sum­
mation runs over all neurons vt's that are forming oriented edges 
going from V1 to vt. 

For feed-forward neural networks, the relation 5 offers im­
mediately the well-known recurrent relations used in the so-called 
back-propagation adaptation.2-^ The partial derivatives 3EfSd1, 
for i G K0, are simply determined by dE/ddj = f'({,)g,. These 
derivatives are then used for the evaluation of derivatives, BE/dd,, 
where the index i corresponds to neurons adjacent to output 
neurons. The same procedure is recurrently repeated until all 
derivatives BEfBd1 assigned to hidden neurons are calculated. 
Finally, knowing all partial derivatives BE/BOi, then the derivatives 
BEfBw1J are simply determined by (4). 

The above-outlined method of calculation of partial derivatives 
may be simply generalized for more than one pair of sets of 
input-output activities. 

The steepest-descent minimization method accelerated by the 
so-called momentum method2 is based on the following updated 
formula, 

W(*+D = «(*> (6) 

where the positive parameter X > 0 should be sufficiently small 
to ensure the convergence of adaptation process and simultaneously 
sufficiently large to achieve the fast convergence. The momentum 
parameter \i is taken from the semi-open interval (0, 1], usually 
M = 0.7-0.9. Finally, the term Awf,*' corresponds to the previous 
change of weight. We have had very good numerical experi­
ences516 if the adaptation process of neural networks was carried 
out by more sophisticated versions of the gradient method,12 e.g., 
by the method of conjugate gradients or by the method of variable 
metric. 

(12) Polak, E. Computational Methods in Optimization; Academic Press: 
New York, 1971. 

(13) Pineda, F. J. Phys. Rev. Lett. 1987, 59, 2229. 
(14) Kvasnicka, V.; Sklenak, S.; Pospfchal, J. / . MoI. Struct. (THEO-

CHEM), in press. 
(15) Minsky, M.; Papert, S. Perceptron. An Introduction to Computa­

tional Geometry; MIT Press: Cambridge, MA, 1969. 
(16) (a) Kvasni5ka, V. Chem. Pap. 1990, 44, 19. (b) KvasniSka, V. / . 

Math. Chem. 1991, 6, 63. 
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Table I. Descriptors 

X 
NO2 
CH2Ph 
SO2Ph 
NHCOCH3 

of Illustrative 

*i 

0 
0 
0 
1 

*2 

1 
1 
2 
1 

Examples 

X) 

0 
2 
0 
1 

in Figure 

X1 

0 
0 
0 
0 

4 

Xs 

4 
0 
4 
0 

*6 

2 
0 
2 
1 

Xl 

0 
0 
0 
0 

Xi 

0 
1 
1 
0 

X9 

2 
0 
2 
0 

*I0 

0 
0 
0 
2 

Xu 

0 
0 
0 
2 

Xn 

0 
0 
0 
3 

*I3 

0 
0 
0 
0 

*14 

0 
0 
0 
1 

Since the objective function E is highly nonlinear, its mini­
mization is a nonstandard numerical task. Usually, a local 
minimum is achieved where the value of objective function is much 
greater than a required one. This means that it is necessary to 
carry out at least a few adaptation processes with randomly 
generated initial values of threshold and weight coefficients. Then 
we select those coefficients that give the lowest (positive) value 
of minimized objective functions for the forthcoming active process 
of neural network. The input activities in the active process are 
determined by descriptors of objects taken from the so-called 
testing set (a set composed of ordered pairs X^x0 that are different 
from those included in the training set). 

The extrapolation of the adapted neural network outside the 
training set is another critical point of applications of neural 
networks as a classifier of objects from the testing set. The active 
process often gives results of classification with much lower 
precision than one requires. Then the adaptation process of neural 
network should be repeated with new randomly generated 
threshold and weight coefficients. New coefficients obtained as 
a result of this adaptation process are again used for the forth­
coming active process. If the resulting classification of objects 
does not satisfy the required precision repeatedly, then attention 
must be directed to the topology of the neural network or to 
descriptors (input activities) of objects from training and testing 
sets. Likely, the topology of the neural network (number of hidden 
layers and numbers of hidden neurons situated at these layers) 
is inadequate to the problem under study or the descriptors do 
not reflect properly the internal structure of objects. 

Descriptors and Functional Groups 
Functional groups may be formally considered as rooted mo­

lecular graphs17 in which the vertices (atoms) and edges (bonds) 
are evaluated by the additional symbols that specify their physical 
nature. The root of these molecular graphs corresponds to the 
atom immediately attached to the substituted molecule. The 
approach presented is restricted to functional groups that are 
attached to molecules by a single bond and do not hold a positive 
or negative charge. We used a modification of the approach 
suggested by Johnson et al.9 This modified description of input 
parameters for the neural network helped to predict the meta 
products of nitration5 and 13C NMR chemical shifts14 in a series 
of monosubstituted benzenes. The atom and bond labels are 
specified in Figure 2. In the next step, we introduce 14 molecular 
subgraphs, each labeled with only one atom or bond; see Figure 
3. These labeled subgraphs are used for simple construction of 
descriptors that characterize the univalent functional groups as 
inputs of neural networks. The entry of the descriptor is equal 
to the number of times the particular subgraph appears in the 
molecular graph assigned to the functional group as shown in 
Figure 4 and Table I. 

Prediction and Classification of Inductive and Resonance a 
Constants by Neural Networks 

The inductive and resonance a constants cx and <7R in physical 
organic chemistry6 are very important parameters that characterize 
the electronic properties of functional groups. They offer a 
quantitative description of qualitative conceptions used in organic 
chemistry18 when the influence of functional groups on the mo­
lecular skeleton (e.g., benzene ring) is considered. Quantum-
chemical approaches19 explaining the physical nature of these 

(17) Balaban, A. T., Ed. Chemical Applications of Graph Theory; Aca­
demic Press: London, 1976. 

(18) Ingold, C. K. Structure and Mechanism in Organic Chemistry, 
Cornell University Press: Ithaca, NY, 1969. 
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Figure 2. Atom and bond labels used for the construction of functional 
group descriptors. The labels correspond to: (A) the lone electron pair, 
(B) the main quantum number decreased by one, (C) the hydrogen atom 
attached to an atom, (D) the phenyl group attached to an atom, (E) the 
a bond, and (F) the ir bond. 
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Figure 3. Fourteen molecular subgraphs that classify rooted molecular 
graphs assigned to univalent functional groups. The bold dots (roots) 
correspond to atoms that are immediately attached to an atom of the 
substituted molecule. 

constants are not very successful. This lack of success may be 
due to an inadequate consideration of environmental effects. 
Effective procedures for quantification of inductive and resonance 
effects were developed by Gasteiger et al.20 in the early 80's. 

(19) Hehre, W. J.; Taft, R. W.; Topson, R. D. Prog. Phys. Org. Chem. 
1976, 12, 159. 
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Table II. Experimental and Estimated <r, and <rR Using Neural Network 

exp est exp est 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

X 

Br 
F 
SO2F 
SF5 

1O2 

NO2 

N3 
H 
OH 
SH 
NH2 

NHOH 
SO2NH2 

N=CCl 2 

CF3 

OCF3 

SO2CF3 

CN 
NCS 
CHO 
CH2Br 
CONH2 

C H = N O H 
CH3 

NHCONH2 

SOCH3 

SO2CH3 

OSO2CH3 

NHCH3 

NHSO2CH3 

C = C H 
CH2CN 
COCH3 

Cl 
I 
SCF3 

SCN 
CO2H 
CH2Cl 
CH2I 
NHCHO 
CF2CF3 

SCOCH3 

CO2CH3 

"i 

0.44 
0.43 
0.75 
0.57 
0.63 
0.67 
0.30 
0.00 
0.29 
0.28 
0.02 
0.06 
0.41 
0.23 
0.38 
0.38 
0.73 
0.51 
0.51 
0.31 
0.10 
0.24 
0.25 

-0.04 
0.04 
0.52 
0.54 
0.39 

-0.11 
0.25 
0.19 
0.21 
0.32 

0.41 
0.40 
0.35 
0.36 
0.33 
0.10 
0.09 
0.25 
0.44 
0.36 
0.33 

CR 

-0.17 
-0.34 

0.22 
0.15 
0.20 
0.16 

-0.13 
0.00 

-0.64 
-0.11 
-0.68 
-0.40 
0.19 

-0.08 
0.19 
0.00 
0.26 
0.19 

-O.09 
0.13 
0.05 
0.14 

-0.13 
-0.13 
-0.28 

0.01 
0.22 
0.00 

-0.74 
-0.20 

0.05 
-0.18 

0.20 

-0.15 
-0.19 

0.18 
0.19 
0.15 
0.03 
0.03 

-0.23 
0.11 
0.11 
0.15 

"\ 

0.42 
0.41 
0.67 
0.60 
0.71 
0.60 
0.39 

-0.02 
0.32 
0.27 
0.04 
0.16 
0.59 
0.27 
0.36 
0.36 
0.68 
0.47 
0.36 
0.25 
0.09 
0.27 
0.34 

-0.08 
0.14 
0.45 
0.53 
0.43 
0.02 
0.32 
0.27 
0.18 
0.21 

0.39 
0.44 
0.51 
0.26 
0.35 
0.05 
0.11 
0.10 
0.27 
0.35 
0.38 

CR no. 

Training Set 
-0.17 
-0.36 

0.20 
0.16 
0.22 
0.17 

-0.12 
0.00 

-0.60 
-0.16 
-0.63 
-0.36 
0.20 

-0.08 
0.20 
0.00 
0.25 
0.16 

-0.12 
0.14 
0.04 
0.11 

-0.11 
-0.14 
-0.28 

0.00 
0.25 
0.01 

-0.78 
-0.17 

0.05 
-0.18 

0.17 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

Testing Set 
-0.21 
-0.15 

0.14 
0.32 
0.15 
0.03 
0.07 

-0.24 
0.33 
0.26 
0.12 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

X 

CH2CH3 

OCH2CH3 

NHCH2CH3 

SO2CH2CH3 

P(CHj)2 

PO(CH3)2 

C(OH)(CF3)2 

OCH(CH3)2 

CH2Si(CH3)3 

Ph 
NHPh 
NHSO2Ph 
COPh 
CO2Ph 
N=CHPh 
CH=NPh 
NHCOPh 
C=CPh 
CH=CHPh 
B(OH)2 

CH2OH 
SCH3 

CH=CH 2 

NHCOCH3 

N(CH3), 
CH2OPh 
NHNH2 

OCOCH3 

N = N P h 
CH2OCH3 

CH2CH2CH3 
C(CH3)j 
Si(CHj)3 

SCH2CH3 

CH(CH3), 
OPh 
SO2Ph 
N(Ph)2 

NHCN 
NO 
OCH3 

OCOPh 
CH2Ph 

"\ 

-0.05 
0.22 

-0.11 
0.54 

-0.08 
0.37 
0.28 
0.30 

-0.15 
0.08 

-0.02 
0.21 
0.30 
0.33 
0.09 
0.31 
0.09 
0.12 
0.06 

-0.07 
0.00 
0.20 
0.07 
0.28 
0.10 
0.02 
0.17 
0.41 
0.28 
0.01 

-0.06 
-0.07 
-0.04 

0.23 
-0.05 

0.34 
0.56 
0.07 
0.26 
0.50 
0.26 
0.23 

-0.08 

°R 

-0.10 
-0.44 
-0.51 

0.22 
0.39 
0.19 
0.05 

-0.72 
-0.07 
-0.08 
-0.38 
-0.18 
0.16 
0.13 

-0.63 
0.13 

-0.27 
0.05 

-0.12 
0.18 
0.00 

-0.18 
-0.08 
-0.26 
-0.92 

0.02 
-0.71 
-0.07 

0.13 
0.02 

-0.08 
-0.13 
-0.04 

-0.18 
-0.10 
-0.35 

0.18 
-0.29 
-0.18 

0.45 
-0.51 
-0.08 
-0.01 

"i 

-0.10 
0.22 

-0.07 
0.49 

-0.08 
0.41 
0.29 
0.27 

-0.15 
0.09 

-0.03 
0.22 
0.32 
0.28 
0.14 
0.14 
0.05 
0.19 
0.06 
0.02 
0.00 
0.18 
0.05 
0.15 
0.04 
0.07 
0.07 
0.38 
0.32 
0.00 

-0.03 
-0.06 
-0.00 

0.22 
-0.09 

0.31 
0.60 

-0.05 
0.26 
0.55 
0.28 
0.31 

-0.10 

*R 

-0.11 
-0.47 
-0.50 

0.21 
0.39 
0.18 
0.06 

-0.67 
-0.07 
-0.08 
-0.39 
-0.15 
0.17 
0.10 

-0.56 
0.11 

-0.33 
0.09 

-0.15 
0.21 
0.00 

-0.15 
-0.07 
-0.28 
-0.87 

0.04 
-0.86 
-0.07 

0.11 
0.01 

-0.06 
-0.12 
-0.03 

-0.06 
-0.11 
-0.39 

0.19 
-0.14 

0.00 
0.27 

-0.67 
-O.03 

0.11 

Substituents and their experimental inductive and resonance 
a constants were selected from Hansch and Leo.21 This set of 
functional groups was divided into a disjoint training set (66 
functional groups) and testing set (21 functional groups); see Table 
II. Substituents with complicated cyclic substructures have been 
excluded from the sets. The choice for the testing set was directed 
to obtain a sufficiently diverse variety of types of substituents. 
The used feed-forward neural network is composed of three layers. 
The juxtaposed input, hidden, and output layers are fully connected 
by oriented connections. The input layer is composed of 14 
neurons that correspond to descriptors (input activities). The 
output layer contains two neurons; their activities correspond to 
inductive and resonance a constants. We have varied the number 
of neurons in the hidden layer from 6 to 10, and best results have 
been obtained for iVH = 8. Since the a constants range from -1 
to 1, the constants A and B from the transfer function 3 should 
be fixed &sA = -\ and B - I . The adaptation process based on 
formula 6 is carried out for A - 0.05 and n = 0.8. After 
5000-8000 iterations, values of E = 0.1 and |grad ^I = IO"4 are 

(20) (a) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. (b) 
Hutchings, M. G.; Gasteiger, J. Tetrahedron Lett. 1983, 24, 2541. (c) 
Gasteiger, J.; Sailer, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 687. 

(21) Hansch, C; Leo, A. Substituent Constants for Correlation Analysis 
in Chemistry and Biology. John Wiley: New York, 1979. 

Table III. Statistical Interpretation of Results from Table II 

std error mean error mean error dev correl coeff 

"R 

"I 

CR 

0.064 
0.031 

0.077 
0.108 

Training Set 
0.049 
0.021 

Testing Set 
0.057 
0.083 

0.042 
0.023 

0.052 
0.070 

0.957 
0.994 

0.924 
0.905 

achieved. The a constants for substituents from the training set 
as well as the testing set predicted by adapted neural network are 
given in Table II. 

The correlation coefficient for both sets is above 0.9 (see Table 
III). A small anomaly exists in these coefficients: the greater 
the correlation between the required and computed resonance a 
constants for the training set, the lower the correlation between 
the required and computed inductive constants for the testing set. 
The same observation holds for errors. Naturally, the results are 
better for training than for testing sets. 

Cluster Analysis of Activities of Hidden Neurons for Different 
Substituents 

An application of three-layer feed-forward neural networks for 
classification and prediction purposes offers as a byproduct the 
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Figure 5. Demonstration of cluster analysis of five objects represented 
by dots in a plane X1-X2. In the first step, objects 4 and 5 are joined into 
a new cluster represented by a dot placed at middle position of 4 and 5. 
In the second step, objects 1 and 2 are joined into a new cluster. In the 
third step, cluster |4,5j and object 3 are joined together. Finally, in the 
fourth step, clusters f 1,2) and (3,4,5) are joined into a cluster composed 
of all five objects. 

Table IV. Clustering of Functional Groups into 10 Clusters 

-NHCOCH3 

% / C H ' 

INH 06 

Figure 4. Four illustrative examples of labeled rooted molecular graphs 
assigned to univalent functional groups. 

very interesting possibility of how to use hidden activities for a 
cluster analysis10 of functional groups. These hidden activities 
may be formally considered2 as an internal representation of 
classified functional groups produced by the adapted neural 
network. Let us assume that a functional group (indexed by 1 
< k < N) is represented by a vector composed of hidden activities, 

x, = (x\"\ xi*> xtf>) (7) 

The set of vectors \xk; k= 1,2,..., N] of hidden activities assigned 
to all substituents is normalized by standard statistical procedure: 

xl*> - x 
%{k) - _! '. ( f o r jt = l, 2 N and i = 1, 2 NH) (8) 

where x, is the arithmetic mean and <r, is the standard deviation, 
both assigned to the ith component of all vectors, 

* , • • 

Zx\» 
k 

N of' 
* 

N- 1 
(9) 

The distance between two normalized vectors ik and x ; is de­
termined by 

doww- IUxW-xmi<2 
(10) 

The used cluster analysis is based on the following recurrent 
procedure. First (initialization), we create from each normalized 
vector X* a cluster; i.e., in this step we have N clusters composed 
of one functional group represented by a normalized vector. Two 
clusters with minimum distance (calculated by (10)) are amal­
gamated in a new cluster, and both original clusters are removed 
from the forthcoming considerations. A vector assigned to this 
new cluster is calculated as an arithmetic mean of vectors of all 
functional groups that belong to the cluster. This procedure is 
recurrently repeated until we have achieved a prescribed number 
N' < N of clusters (see Figure 5). The resulting clustering of 

cluster functional groups 

1 

9 
10 

|Br, Cl, F, I, OH, SH, OCH3, SCH3, OCH2CH3, OPh, 
SCH2CH3J 

(SO2F, 1O2, NO, NO2, B(OH)2, NHOH, SO2NH2, CN, 
CHO, CO2H, CONH2, SOCH3, SO2CH3, COCH3, 
NNPh, SO2CH2CH3, SO2Ph, COPh) 

ISF5, CF3, CH2Br, CH2Cl, CH2I, CO2CH3, PO(OCHj)2, 
CO2Ph) 

(N3, NCS, SCN, NHCN, NHCHO, NHCONH2, SCOCH3, 
OSO2CH3, NHSO2CH3, OCOCH3, NHCOCH3, OCOPh, 
NHSO2Ph, NHCOPh) 

(H, NH2, NHNH2, CH=NOH, CH2OH, NHCH3, Ph, 
N(Ph)2, C=CH, CH2OCH3, NHCH2CH3, N(CH3)2, 
CH2OPh, C=CPh, NHPh, N=CHPh, CH=NPh) 

(N=CCl2, OCF3, SO2CF3, SCF3, CF2CF3, C(OH)(CFj)2) 
(CH3, CH=CH2, CH2CH3, P(CH3J2, CH(CH3)2, 

CH2CH2CH3, Si(CH3)3, C(CH3)3, CH2Ph, CH=CHPh) 
ICH2CN) 
1OCH(CHj)2) 
(CH2Si(CHj)j| 

Table V. Clustering of Functional Groups into Five Clusters 

cluster functional groups 
1 (Br, Cl, F, I, OH, SH, OCH3, SCH3, OCH(CHj)2, 

OCH2CH3, SCH2CH3, OPh) 
2 (SO2F, SF5, 1O2, NO, NO2, H, B(OH)2, NH2, NHOH, 

SO2NH2, NHNH2, N=CCl2, CF2, OCF3, SO2CF3, SCF3, 
CN, CHO, CO2H, CH2Br, CH2Cl, CH2I, CONH2, 
CH=NOH, CH2OH, SOCH3, SO2CH3, NHCH3, 
CF2CF3, C=CH, CH2CN, COCH3, CO2CH3, CH2OCH3, 
NHCH2CH3, SO2CH2CH3, N(CH3J2, PO(OCH2)2, 
C(OH)(CFj)2, Ph, NNPh, SO2Ph, NHPh, COPh, CO2Ph, 
N=CHPh, CH=NPh, CH2OPh, C=CPh, N(Ph)2) 

3 (N3, NCS, SCN, NHCN, NHCHO, NHCONH2, 
OSO2CH3, NHSO2CH3, SCOCH3, OCOCH3, 
NHCOCH3, NHSO2Ph, OCOPh, NHCOPh) 

4 ICH3, CH=CH2, CH2CH3, P(CH3J2, CH(CHj)2, CH2Ph, 
CH2CH2CHj, Si(CHj)3, C(CHj)3, CH=CHPh) 

5 |CH2Si(CH3)3j 

N functional groups into a smaller number TV'of clusters should 
reflect a similarity between them. All 87 functional groups for 
10 and S clusters are displayed in Tables IV and V. 

Results and Discussion 
One of the main problems of applications of neural networks 

in chemical reactivity studies is a proper representation of func­
tional groups via their descriptors. The initial method suggested 
by Johnson et al.9 was expanded in our work. It is also based on 
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simple atomic and bond labels that reflect their physical nature 
and in some (additive) manner their topology. Our recent re­
sults514 and the results presented in this paper support the as­
sumption that these descriptors are useful for a proper repre­
sentation of functional groups for purposes of neural network 
applications. 

The descriptors are constructed directly from the structural 
formulas of functional groups in a way immediately reflecting their 
structural features. We believe that this is the main superiority 
of the used descriptors with respect to other potentially applicable 
descriptors for chemical-reactivity studies (e.g., Ugi's22 BE matrix 
used by Elrod4ab or ad hoc chosen physico-chemical parameters 
used by Luce40). Moreover, for those special cases dealing with 
specific chemical-reactivity effects (e.g., regioselectivity or site 
selectivity), the structural descriptors used may be directly enlarged 
by additional parameters. Those parameters could correspond 
to the properties of reactants or functional groups determined by 
the whole structure (e.g., inductive and resonance a constants, 
steric hindrance parameters, charges of a or ir skeleton,20 a kind 
of topological index, etc.). 

Inductive and resonance a constants represent a very important 
approach to describe properties of functional groups, in particular 
their influence to synthons7,8 undertaking chemical reactions. We 
have demonstrated that these parameters are useful for classi­
fication by feed-forward neural networks. The descriptors are 
also adequate in the classification of the influence of functional 
groups to reaction cores. The adapted neural network was tested 
for its ability to predict inductive and resonance a constants for 
21 functional groups, which form the testing set (see second part 

(22) Ugi, I.; Bauer, J.; Friedrich, J.; Gasteiger, J.; Jochum, C; Schubert, 
V. Angew. Chem., Int. Ed. Engl. 1979, 18, 111. 

Introduction 
The geometric structure of pseudohalides is still subject to 

uncertainty in those cases where experimental information on the 
geometry is not available. This is caused by the fact that ab initio 
calculations seem to have difficulties in predicting the correct 
geometry of these molecules.1"3 The most probable reason for 
this effect is that the potential energy curve of pseudohalides is 
rather shallow around the minimum.1'2 In order to circumvent 
this problem, it is often necessary to use higher than usual accuracy 
in the gradient calculation. 

For all pseudohalides investigated so far, it was necessary to 
include polarization functions and correlation energy also had to 

* Author to whom correspondence should be addressed at Universitat Basel. 
'The Technical University of Budapest. 

of Table II). In most cases, the sign of the predicted a constants 
is retained, and for the functional groups -N(Ph)2, -NHCN, and 
-CH2Ph, one constant has the opposite sign. Two of these groups 
contain phenyl, and therefore, their precise description should likely 
involve additional descriptors that reflect more adequately their 
anomalous physical properties. 

Activities of hidden neurons correspond2 to an internal repre­
sentation of functional groups. These activities were used for 
simple cluster analysis of functional groups. That is, the whole 
training set is divided in disjoint subsets, where these clusters are 
composed of functional groups with similar hidden-activity vectors. 
For these purposes, the training set was composed of all 87 
functional groups (see Table II), and the neural network was again 
subjected to the adaptation process. After 5000 iterations, the 
value of the objective function yielded E = 0.2 and |grad E\ = 
10""4. The hidden activities of all 87 functional groups were used 
as an input for cluster analysis; the obtained results for 5 and 10 
clusters are presented in Tables IV and V. The obtained clustering 
of functional groups is chemically plausible as they have similar 
structural features and similar inductive and resonance properties. 
Moreover, the present results are closely related to the cluster 
analysis of functional groups carried out by Hansch and Leo21 

based on different properties that characterize the functional 
groups (lipophilicity, molecular refractivity, inductive and reso­
nance <r constants, and binary H-bonding). 

In conclusion, it seems that the neural network approach gives 
both a useful and simple mathematical model for the classification 
and prediction of molecular properties manifested by organic 
chemical reactivity. This approach allows the construction of 
formal methods that solve in some binary manner the difficult 
problem of chemical reactivity for purposes of computer-aided 
organic synthesis design. 

be incorporated into the calculations to obtain geometries similar 
to the experimental ones. On using Gaussian basis sets of quality 
3-2IG or better in an SCF calculation but without polarization 
functions and including the effects of correlation, always a linear 
C-N-C and N-C-O angle was obtained for methyl and terti­
ary-butyl isocyanates.1'2 In a publication by Sullivan, Durig, Durig, 
and Cradock,4 however, ab initio calculations predicted these 
angles to be less than 180° in ethyl isocyanate using a 3-2IG basis 

(1) Veszprfmi, T.; Pasinszki, T.; Feh4r, M. J. Chem. Soc., Faraday Trans. 
1 1991, 87, 3805. 

(2) Pasinszki, T.; Veszpremi, T.; Feher, M. Chem. Phys. Uu. 1992,189, 
245. 

(3) Mack, H. G.; Oberhammer, H. Chem. Phys. Lett. 1989, 157, 436. 
(4) Sullivan, J. F.; Durig, D. T.; Durig, J. R.; Cradock, S. / . Phys. Chem. 

1987, P/, 1770. 

The Equilibrium Conformation of Ethyl Isocyanate Revisited 

Miklos Feher,* Tibor Pasinszki/ and Tamas Veszpremi1 

Contribution from the Institutfur Physikalische Chemie, Universitat Basel, Klingelbergstrasse 80, 
CH-4056 Basel, Switzerland, and Inorganic Chemistry Department, The Technical University of 
Budapest, H-1521 Budapest, Hungary. Received June 12, 1992 

Abstract: The equilibrium conformation of ethyl isocyanate was reinvestigated by molecular orbital calculations using second-order 
Moller-Plessett perturbation theory and a 6-3IG** basis set. It was shown that the inclusion of electron correlation is of 
crucial importance in the prediction of the equilibrium structure for this molecule. According to the calculations, there are 
two stable conformers, the gauche and the trans, of which the gauche has lower energy. The cis form does not correspond 
to a local energy minimum. A new interpretation for the experimental microwave spectra is suggested. The known infrared 
spectrum was also assigned using frequency calculations. 
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